

Agyat gupta (TARGET MATHEMATICS) Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph.: 4010685®,2630601(O)Mobile : 9425109601; 9425110860 PREMIER INSTITUTE for X, XI & XII.

GENERAL INSTRUCTIONS:

1. All questions are compulsory.

The question paper consists of 34 questions divided into four sections A,B,C and D. Section

 A comprises of 10 question of 1 mark each. Section – B comprises of 8 questions of 2 marks each. Section – C comprises of 10 questions of 3 marks each and Section – D comprises of 6 questions of 4 marks each.

- 3. Question numbers 1 to 10 in Sections A are multiple choice questions where you are to select one correct option out of the given four.
- 4. There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four mark each. You have to attempt only one lf the alternatives in all such questions.
- 5. Use of calculator is not permitted.

M	ATHEMATICS CLASS X (SA-2)					
Time :	3 Hours 15 Minutes Maximum Marks : 80					
VOLUME & SURFACE AREA OF SOLID FIGURE AND PROBABILITY						
SECTION A						
Q.1	A sphere and a cube have equal surface areas. The ratio of the volume of the sphere to that of cube is (a) $\sqrt{\pi} : \sqrt{6}$ (b) $\sqrt{6} : \sqrt{\pi}$ (c) $\sqrt{\pi} : \sqrt{3}$ (d) $\sqrt{3} : \sqrt{\pi}$ Ans B					
Q.2	The height of a cone is 60 cm. A small cone is cut off at the top by a plane parallel to the base and its volume is $\frac{1}{64}$ the volume of original cone. The height from the base at which the section is made is (a) 15 cm (b) 30 cm (c) 45 cm (d) 20 cm. Ans (c)					
Q.3	A solid toy is in the from of a hemisphere surmounted by a right circular cone. Height of the cone is 2 cm and diameter of base is 4 cm. if a right circular cylinder circumscribes the solid, find how much more space it will cover. (a) $4 \pi cm^3$ (b) $6 \pi cm^3$ (c) $8 \pi cm^3$ (d) $\frac{16}{3} \pi cm^3$. Ans c					
Q.4	If a solid sphere of radius 10 cm is moulded into 8 spherical solid balls of equal radius, then the surface area of each ball is (a) $60 \pi cm^2$ (b) $65 \pi cm^2$ (c) $75 \pi cm^2$ (d) $100 \pi cm^2$ Ans.(d)					
Q.5	If h, C and V are height, curved surface area and volume of a cone					
Target Mathematics by- Agyat Gupta ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph :2337615: 4010685@ 2630601(0) Mobile : 9425109601: 9425110860:9425772164(P)						

	respectively, then $3v \pi h^3 - c^2 h^2 + 9v^2$ is equal to							
	(a) 1 (b)0 (c) -1 (d) 2 Ans.(b)							
Q.6	Two dice are thrown simultaneously. What is the probability of obtaining a							
	multiple of 2 on one of them and a multiple of 3 on the other							
	(a) $\frac{5}{36}$ (b) $\frac{11}{36}$ (c) $\frac{1}{6}$ (d) $\frac{1}{3}$ Ans (b							
Q.7	The probability that leap year has 53 sunday, is							
	$(a)\frac{2}{7}(b)\frac{5}{7}(c)$ 1 (d)None of these Ans (a							
Q.8	From a book containing 100 pages, one page is selected randomly. The							
	probability that the sum of the digits of the page number of the selected page is							
	11, is (a) $\frac{2}{25}$ (b) $\frac{9}{100}$ (c) $\frac{11}{100}$ (d) None of these Ans (a							
Q.9	There are two childrens in a family. The probability that both of them are boys							
	is (a) $\frac{1}{2}$ (b) $\frac{1}{3}$ (c) $\frac{1}{4}$ (d)None of these Ans c							
Q.10	The height of a cone is 30 cm. A small cone is cut off at the top by a							
	plane parallel to the base. If its volume become $\frac{1}{27}$ o the volume of							
	the given cone, then the height above the base at which the section has							
	been made is (a)10 cm (b)15 cm (c)20 cm (d)25 cm Ans.(c)							
	SECTION B							
Q.11	If odds in favour of an event be $2:3$. Find the probability of non –							
0.12	Solid cylinder of brass 8 m high and 4 m diameter is melted and recast into a							
~···	cone of diameter 3 m. Find the height of the cone. Ans 42.66 m							
Q.13	A jar contains 24 marbles, some are green and others are blue. If a marble is							
	drawn at random, from the jar, the probability that it is green is $\frac{2}{3}$, find the							
	number of blue marbles in the jar. Ans : 8							
Q.14	The radius of the internal and external surfaces of a hollow spherical shell are 3							
	cm and 5 cm respectively. If it is melted and recast into a solid cylinder of							
	height $2\frac{2}{3}$ cm. Find the diameter of the cylinder. Ans : 14 cm							

Target Mathematics by- Agyat Gupta ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

Q.15	Cards marked with numbers 6 to 101 are placed in a box and mixed			30 paise per square meter. Ans. Total area in 500 revoluation = 1584 sq m &
	thoroughly. One card is drawn at random from this box. Find the probability	-	0.01	total $\cos t = 4/5$.20
	that the number on the calc is (i) a number which is a perfect square (ii) a prime number less than 20 Ans: $n(s) = 96$ (i) $8/96 = 1/12$ (ii) $7/96$		Q.21	A solid is composed of a cynnder with hemispherical ends. If the whole length
0.1(prime number less than 50. Ans . If $(s) = 90(1) \delta / 90 = 1 / 12(11) / / 90$			of the solid is 100 cm and the diameter of the nellid at the rote of 5 mains nor as am Sal
Q.10	Two cubes, each of volume 64 cm are joined end to end. Find the surface area of the resulting suboids $\frac{160 \text{ cm}^2}{100 \text{ cm}^2}$			the cost of poinsning the surface of the solid at the rate of 5 parse per sq cm. sol.
0.17	A subara of diameter 5 cm is drawned into a sylindrical yessel negative filled with			14 cm 72 cm 14 cm
Q.17	A sphere of diameter 5 cm is dropped into a cymuncal vessel party filled with water. The diameter of the base of the vessel is 10 cm. If an are is completely			
	water. The diameter of the base of the vessel is 10 cm. If sphere is completely submarged, by how much will the level of water rise? (Ang. $5/6$ cm)			<>
0.10	A meter earlier strin 25 such a 7 such restated shows the language side. Find the			Radius of hemisphere, $r = 14$ cm
Q.18	A rectangular strip 25 cm \times / cm is rotated about the longer side. Find the			Length of cylindrical part (h) = $[100 - 2(14)] = 72 \text{ cm}$
	volume of the solid, thus generated. $7.5 h = 25$ Welving $= 2850 \text{ cm}^3$			Radius of cylindrical part = Radius of hemispherical ends, $r = 14$ cm
	$\frac{\text{ans} \cdot \mathbf{r} = 7 \text{ as } \mathbf{n} = 23 \text{ Volume} = 3830 \text{ cm}}{\mathbf{OB}}$			Total area to be polished = 2 (C.S.A. of hemispherical end) + C.S.A. of
	UK The rain water from a roof $22m \times 20$ m drains into a calindrical wassel having			cylinder = $2(2\pi r^2) + 2\pi rh = 2\pi r(2r+h) = 2x\frac{22}{7}x \cdot 14(2 \times 14 + 72) = 88$
	The fail water from a foor $22 \text{ m} \times 20 \text{ m}$ drams into a cylindrical vesser having diameter of base $2m$ and beight 3.5 m . If the vessel is just full find the rainfall			$(28 + 72) = 8800 \text{ cm}^2 \text{ Cost of polishing the surface}$
	in an 2.5 cm			$= 8800 \times 0.05 = \text{Rs} 440$
		_	0.22	A metallic bucket is in the shape of a frustum of a cone mounted on a hollow
	SECTION C		Q.22	Cylindrical base given in the figure. If the diameters of two circulars ends of
Q.19	Two customers KRITIKA and JYOTSNA are visiting a particular shop in			the bucket are 45cm and 25 cm, total vertical height is 30 cm and that of the
	the same week (Tuesday to Saturday). Each is equally likely to visit the			cylindrical portion is 6 cm, find the area of the metallic sheet used to make the
	shop on any day so on another day. What is the probability that both will visit			bucket $\begin{pmatrix} 22 \\ -22 \end{pmatrix}$ Ans: Height of frustum - 30 - 6-24 cm : Radi of circular
	the shop on (i) same day ?(ii) consecutive days? (iii) different days ?			bucket: $\begin{pmatrix} \pi \\ 7 \end{pmatrix}$ Alls. Height of Hustum = 50 - 0-24 cm , Radi of circular
	Ans : Same day = $5 / 25 = 1 / 5$ (ii) consecutive days = $8 / 25$ (iii) different			end = $22.5 \& 12.5$; Slant height = 26 cm ; Area of metallic sheet used =
	days = 20 / 25 = 4 / 5			curve surface area of frustum of cone + area of circular base end +
	OR			curve surface area of cylinder = $1216.25\pi cm^2 = 3822.cm^2$
	One card is drawn from a well – shuffled deck of 52 cards. Find the probability			OR
	of getting (i) a king of red colour (ii) a red face card (iii)) the jack of hearts.			A metallic bucket is in the shape of a frustum of a cone mounted on a hollow cylindrical base given in the figure. If the diameters of two circulars ends of the
	(iv) the queen of diamonds. Ans : i) a king of red colour $= 2/52 = 1/26$ (ii) a			bucket are 45cm and 25 cm, total vertical height is 30 cm and that of the
	red face card $12/52 = 3/13$ (iii) the jack of hearts = $1/52$ (iv) the queen of			cylindrical portion is 6 cm. Also find the volume of water it can hold. (22)
	diamonds = $1 / 52$.			$\left(\pi = {7}\right)$ Ans: Height of frustum = 30-6=24 cm Radi of circular end 22.5
Q.20	The diameter of a roller 120 cm long is 84 cm. If it takes 500 complete			α 12.5; volume of bucket it can hold = volume of frustum =
	revolutions to level a playground, determine the cost of levelling it at the rate of			

 Target Mathematics by- Agyat Gupta ;
 Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

 Ph. :2337615; 4010685®, 2630601(O)
 Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

 Target Mathematics by- Agyat Gupta ;
 Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

 Ph. :2337615; 4010685®, 2630601(O)
 Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

Target Mathematics by- Agyat Gupta ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

 Target Mathematics by- Agyat Gupta ;
 Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

 Ph. :2337615; 4010685®, 2630601(O)
 Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

	diameter is 7 cm. If the flow of water is 72cm per second, how many litres of water are being pumped out in one hour ? Ans volume of water flow out per hour = 9979200 cubic cm = 9979.2 liters OR A hemispherical tank of radius $1\frac{3}{4}$ m is full of water. It is connected with a pipe which empties it at the rate of 7 litres per second. How much time		$= \left(\frac{1}{3} \times 3.14 \times 16 \times 624\right) \text{cm}^{3}$ = (3.14 × 3328) cm ³ = 10449.92 cm ³ $= \frac{10449.92}{1000} \text{ litres}$ $\begin{bmatrix} 1 \text{ litre } = 1000 \text{ cm}^{3} \\ 1 \text{ cm}^{3} = \frac{1}{1000} \text{ lts} \end{bmatrix}$
	will it take to empty the tank completely? Ans Radius of the hemisphere $=\frac{7}{4}m = \frac{7}{4} \times 100 \text{ cm} = 175 \text{ cm} \qquad \therefore \qquad \text{Volume} \qquad \text{of} \qquad \text{the} \qquad \text{hemisphere} = \frac{2}{3} \times \pi \times 175 \times 175 \times 175 \text{ cm}^3 \text{The cylindrical pipe empties it at the rate of 7}$ liters i.e. 7000 cm ³ of water per second Hence, the required time to		$= 10.45 \text{ Hues (approx.) (f) Cost of link = 10.45 \text{ x Rs. 15}}$ = Rs. 156.75 Now, slant height of the frustum of cone $1 = \sqrt{h^2 + (R - r)^2} = \sqrt{16^2 + (20 - 8)^2} = \sqrt{256 + 144} = \sqrt{400} = 20 \text{ cm.}$ Total surface area of the container = $[\pi l (R + r) + \pi r^2]$ = $[3.14 \text{ x } 20 (20 + 8) + 3.14 (8)^2] \text{ cm}^2 = 3.14 [20x28 + 64] \text{ cm}^2 = 3.14 \text{ x}$ $624 \text{ cm}^2 = 1959.36 \text{ cm}^2$
Q.30	empty the tank = $\left(\frac{2}{3} \times \frac{22}{7} \times 175 \times 175 \times 175 \div 7000\right)$ s = $\frac{2}{3} \times \frac{22}{7} \times \frac{175 \times 175 \times 175}{7000 \times 60}$ min = $\frac{11 \times 25 \times 7}{3 \times 2 \times 12}$ min = $\frac{1925}{72}$ min = 26.75 min, nearly. A container (open at the top) made up of a metal sheet is in the form of a frustum of a cone of height 16 cm with radii of its lower and upper ends as 8	Q.3	(ii) Cost of metal sheet used= Rs. $\left[1959.36 \times \frac{5}{100}\right] = \frac{9796.8}{100}$ =Rs. 97.968 = Rs. 98 (approx.) 31 A toy is in the shape of a right circular cylinder with a hemisphere on one end and a cone on the other. The radius and height of the cylindrical part are 5 cm and 13 cm respectively. The radii of the hemispherical and conical parts are
	cm and 20 cm respectively(Take $\pi = 3.14$) Find : (<i>i</i>) the cost of milk when it is completely Filled with milk at the rate of Rs. 15 per litre. (<i>ii</i>) the cost of metal sheet used, if it costs Rs. 5 per 100 cm ² Sol. The container is in the shape of a frustum of a cone ; $h = 16$ cm, $r = 8$ cm, $R = 20$ cm M M M M M M M M	Q.32	 a the same as that of the cylindrical part. Find the surface area of the toy, if the total height of the toy is 30 cm. Ans. S.A. = 770 cm² An agriculture field is in the form of a rectangle of length 20m width 14m. A 10m deep well of diameter 7m is dug in a corner of the field and the earth taken out of the well is spread evenly over the remaining part of the field. Find
		Q.3	the rise in its level. Ans $h = \frac{2 \times 385}{483} = \frac{770}{483} = 1.594m$ 33 A right triangle, whose sides are 15 cm and 20 cm, is made to revolve about its hypotenuse. Find the volume and the surface area of the double cones so formed. (Use $\pi = 3.14$). (Ans. Volume of double cone 3768 cubic cm & Surface area of double cone = 1318.8 cm
Toward N	$+ (8)^{2} cm^{3} = \frac{1}{3} x 3.14 x 16 (400 + 160 + 64)$	Q.3	A gulab jamun, contains sugar syrup up to about 30% of its volume. Find approximately how much syrup would be found in 45 gulab jamuns, each shaped like a cylinder with two hemispherical ends with length 5 cm and
Target Mathematics by- Agyat Gupta ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : <u>9425109601;</u> 9425110860;9425772164(P)		Tar Ph.	get Mathematics by- Agyat Gupta; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony :2337615; 4010685®, 2630601(O) Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

